
Environment-Independent Task Specifications via GLTL

Michael L. Littman Ufuk Topcu Jie Fu Charles Isbell Min Wen James MacGlashan

Abstract

We propose a new task-specification language for
Markov decision processes that is designed to
be an improvement over reward functions by be-
ing environment independent. The language is a
variant of Linear Temporal Logic (LTL) that is
extended to probabilistic specifications in a way
that permits approximations to be learned in fi-
nite time. We provide several small environments
that demonstrate the advantages of our geomet-
ric LTL (GLTL) language and illustrate how it
can be used to specify standard reinforcement-
learning tasks straightforwardly.

1 Introduction

The thesis of this work is that (1) rewards are an excel-
lent way of controlling the behavior of agents, but (2) re-
wards are difficult to use for specifying behaviors in an
environment-independent way, therefore (3) we need in-
termediate representations between behavior specifications
and reward functions.

The intermediate representation we propose is a novel vari-
ant of linear temporal logic that is modified to be proba-
bilistic so as to better support reinforcement-learning tasks.
Linear temporal logic has been used in the past to specify
reward functions that depend on temporal sequences (Bac-
chus et al., 1996); here, we expand the role to provide a ro-
bust and consistent semantics that allows desired behaviors
to be specified in an environment-independent way. Briefly,
our approach involves the specification of tasks via tempo-
ral operators that have a constant probability of expiring
on each step. As such, it bears a close relationship to the
notion of discounting in standard Markov decision process
(MDP) reward functions (Puterman, 1994).

At a philosophical level, we are viewing behavior specifi-
cation as a kind of programming problem. That is, if we
think of a Markov decision process (MDP) as an input, a

reward function as a program, and a policy as an output,
then reinforcement learning can be viewed as a process of
program interpretation. We would like the same program
to work across all possible inputs.

1.1 Specifying behavior via reward functions

An MDP consists of a finite state space, action space,
transition function, and reward function. Given an en-
vironment, an agent should behave in a way that maxi-
mizes cumulative discounted expected reward. The prob-
lems of learning and planning in such environments have
been vigorously studied in the AI community for over 25
years (Watkins, 1989; Boutilier et al., 1999; Strehl et al.,
2009). A reinforcement-learning (RL) agent needs to learn
to maximize cumulative discounted expected reward start-
ing with an incomplete model of the MDP itself.

For “programming” reinforcement-learning agents, the
state of the art is to define a reward function and then for
the learning agent to interact with the environment to dis-
cover ways to maximize its reward. Reward-based speci-
fications have proven to be extremely valuable for optimal
planning in complex, uncertain environments (Russell &
Norvig, 1994). However, we can show that reward func-
tions, as they are currently structured, are very difficult to
work with as a way of reliably specifying tasks. The best
use case for reward functions is when the utilities of all ac-
tions and outcomes can be expressed in a consistent unit,
for example, time or money or energy. In reality, how-
ever, putting a meaningful dollar figure on scuffing a wall
or dropping a clean fork is challenging. When informally
adding negative rewards to undesirable outcomes, it is dif-
ficult to ensure a consistent semantics over which planning
and reasoning can be carried out. Further, reward values of-
ten need to be changed if the environment itself changes—
they are not environment independent. Therefore, to get a
system to exhibit a desired behavior, it can be necessary to
try different reward structures and carry out learning mul-
tiple times in the target environment, greatly undermining
the purpose of autonomous learning in the first place.

ar
X

iv
:1

70
4.

04
34

1v
1

 [c
s.A

I]
 1

4
A

pr
 2

01
7

Figure 1: Action a2 has probability 1−p of transitioning to
a non-b state and a probability of p of entering a self-loop
in a b state. Action a1 passes through a b state and then
over to the goal.

Consider the simple example MDP in Figure 1. The agent
is choosing between a1 and a2 in the initial state s0. Choos-
ing a1 causes the agent to pass through bad state b1 for one
step, then to continue on to the goal g. Action a2, however,
results in a probabilistic transition to s1 (with probability
1−p) or bad state b2 (with slip probability p). From s1, the
agent can continue on to the goal. If it reaches b2, it gets
stuck there forever.

Let’s say our desired behavior is “maximize the probability
of reaching g without hitting a bad state”. (A bad state
could be something like colliding with a wall or bumping
up against a table.) The probability of success of a1 is zero
and a2 is 1− p. Thus, for any 0 ≤ p < 1, it is better to take
action a2.

What reward function encourages this behavior? For con-
creteness, let’s assume a discount of γ = 0.8 and a reward
of +1 for reaching the goal. We can assign bad states a
value of −r. In the case where p = 0.1, setting r > 0.16
encourages the desired behavior.

Consider, though, what happens if the slip probability is
p = 0.3. Now, there is no value of r for which a2 is pre-
ferred to a1

1. That is, it has become impossible to find a
reward function that creates the correct incentives for the
desired behavior to be optimal.

This example is perhaps a bit contrived, but we have ob-
served the same phenomenon in large and natural state
spaces as well. The reason for this result is that reward
functions force us to express utility in terms of the dis-
counted expected visit frequency of states. In this case,
we are stuck trying to make a tradeoff between the cer-
tainty of encountering a bad state once and the possibility
of encountering a bad state repeatedly. Since we are try-
ing to maximize the probability of zero encounters with a
bad state, the expected number of encounters is only useful
for distinguishing zero from more than zero—the objective
cannot be translated into a reward function when bad states

1Actually, r < −24/50 works for this example, but that
is tantamount to rewarding the agent for bumping into things—
something bound to result in other problems.

are unavoidable.

1.2 Specifying behavior via LTL

An alternative to specifying tasks via reward functions is
to use a formal specification like linear temporal logic or
LTL (Manna & Pnueli, 1992; Baier & Katoen, 2008).

Linear temporal logic formulas are built up from a set of
atomic propositions; the logic connectives: negation (¬),
disjunction (∨), conjunction (∧) and material implication
(→); and the temporal modal operators: next (©), al-
ways (�), eventually (♦) and until (U). A wide class of
properties including safety (�¬b), goal guarantee (♦g),
progress (�♦g), response (�(b → ♦g)), and stability
(♦�g), where b and g are atomic propositions, can be ex-
pressed as LTL formulas. More complicated specifications
can be obtained from the composition of such simple for-
mulas. For example, the specification of “repeatedly visit
certain locations of interest in a given order while avoid-
ing certain other unsafe or undesirable locations” can be
obtained through proper composition of simpler safety and
progress formulas (Manna & Pnueli, 1992; Baier & Ka-
toen, 2008).

Returning to the example in Figure 1, the task is to avoid b
states until g is reached: ¬bUg. Given an LTL specification
and an environment, an agent, for example, should adopt a
behavior that maximizes the probability that the specifica-
tion is satisfied. One advantage of this approach is its abil-
ity to specify tasks that cannot be expressed using simple
reward functions (like the example MDP in Section 1.1).
Indeed, in the context of reinforcement-learning problems,
we have found it very natural to express standard MDP task
specifications using LTL.

Standard MDP tasks can be expressed well using these tem-
poral operators. For example:

• Goal-based tasks like mountain car (Moore, 1991): If
p represents the attribute of being at the goal (the top
of the hill, say), ♦p corresponds to eventually reach-
ing the goal.

• Avoidance-type tasks like cart pole (Barto et al.,
1983): If q represents the attribute of being in the fail-
ure state (dropping the pole, say), �¬q corresponds to
always avoiding the failure state.

• Sequence tasks like taxi (Dietterich, 2000): If p rep-
resents some task being completed (getting the pas-
senger, say) and q represents another task being com-
pleted (delivering the passenger, say), ♦(p∧♦q) cor-
responds to eventually completing the first task, then,
from there, eventually completing the second task.

• Stabilizing tasks like pendulum swing up (Atkeson,
1994): If p represents the property that needs to be sta-
bilized (the pendulum being above the vertical, say),

Figure 2: Action a1 has probability p1 of a self-loop and
1−p1 of transitioning to a non-g state. Action a2 has prob-
ability p2 of a self-loop and 1 − p2 of transitioning to a
non-g state. The policy that maximizes the probability of
satisfaction of �g is highly dependent on p1 and p2 if they
are near one.

♦�p corresponds to eventually achieving and contin-
ually maintaining the desired property.

• Approach-avoid tasks like the 4×3 grid (Russell &
Norvig, 1994): If p represents the attribute of being
at the goal (the upper right corner the grid, say), and
q represents the attribute of being at a bad state (the
state below it, say), ¬qUp corresponds to avoiding the
bad state en route to the goal.

On the other hand, there are barriers to straightfor-
wardly adopting temporal logic-based languages in a
reinforcement-learning setup. The most significant is that
we can show that it is simply impossible to learn to satisfy
classical LTL specifications in some cases. A key property
for being able to learn near-optimal policies efficiently in
the context of reward-based MDPs is what is known as the
Simulation Lemma (Kearns & Singh, 1998). Informally, it
says that, for any MDP and any ε > 0, there exists an ε′ > 0
such that finding optimal policies in an ε′-close model of
the real environment results in behavior that is ε-close to
optimal in the real environment.

Unfortunately, tasks specified via LTL do not have this
property. In particular, there is an MDP and an ε > 0 such
that no ε′-close approximation for ε′ > 0 is sufficient to
produce a policy with ε-close satisfaction probability.

Consider the MDP in Figure 2. If we want to find a be-
havior that nearly maximizes the probability of satisfying
the specification �g (stay in the good state forever), we
need accurate estimates of p1 and p2. If p1 = p2 = 1 or
p1 < 1 and p2 < 1, either policy is equally good. If p1 = 1
and p2 < 1, only action a1 is near optimal. If p2 = 1
and p1 < 1, only action a2 is near optimal. As there is
no finite bound on the number of learning trials needed to
distinguish p1 = 1 from p1 < 1, a near optimal behavior
cannot be found in worst-case finite time. LTL expressions
are simply too unforgiving to be used with any confidence
in a learning setting.

In this work, we develop a hybrid approach for specify-
ing behavior in reinforcement learning that combines the

strengths of both reward functions and temporal logic spec-
ifications.

2 Learning To Satisfy LTL

While provable guarantees of efficiency and optimality
have been at the core of the literature on learning (Fiechter,
1994; Kearns & Singh, 2002; Brafman & Tennenholtz,
2002; Li et al., 2011), correctness with respect to compli-
cated, high-level task specifications—during the learning
itself or in the behavior resulting from the learning phase—
has attracted limited attention (Abbeel & Ng, 2005).

2.1 Geometric linear temporal logic

We present a variant of LTL we call geometric linear tem-
poral logic (GLTL) that builds on the logical and temporal
operators in LTL while ensuring learnability. The idea of
GLTL is roughly to restrict the period of validity of the
temporal operators to bounded windows—similar to the
bounded semantics of LTL (Manna & Pnueli, 1992). To
this end, GLTL introduces operators of the form of ♦µb
with the atomic proposition b, which is interpreted as “b
eventually holds within k time steps where k is a random
variable following a geometric distribution with parameter
µ.” Similar semantics stochastically restricting the window
of validity for other temporal operators are also introduced.

This kind of geometric decay fits very nicely with MDPs
for a few reasons. It can be viewed as a generalization of
reward discounting, which is already present in many MDP
models. It also avoids unnecessarily expanding the specifi-
cation state space by only requiring extra states to represent
events and not simply the passage of time.

Using G1(µ) to represent the geometric distribution with
parameter µ, the temporal operators are:

• ♦µp: p is achieved in the next k steps, k ∼ G1(µ).

• �µq: q holds for the next k steps, k ∼ G1(µ).

• q Uµq: q must hold at least until p becomes true, which
itself must be achieved in the next k steps, k ∼ G1(µ).

Returning to our earlier example from Figure 2, evaluat-
ing the probability of satisfaction for �g requires infinite
precision in the learned transition probabilities in the envi-
ronment. Consider instead evaluating �µg in this environ-
ment. An encoding of the specification for this example is
shown in Figure 3 (Third). We call it a specification MDP,
as it specifies the task using states (derived from the for-
mula), actions (representing conditions), and probabilities
(capturing the stochasticity of operator expiration). This
example says that, from the initial state q0, encountering
any state where g is not true results in immediately fail-
ing the specification. In contrast, encountering any state

where g is true results in either continued evaluation (with
probability µ) or success (with probability 1− µ). Success
represents the idea that the temporal window in which g
must hold true has expired without g being violated.

Composing these two MDPs leads to the composite MDP
in Figure 3 (Fourth). The true satisfaction probability for
action ai is 1−µ

(1−µ+pi) . Thus, if µ = .9, the dependence
of this value on ε is .1

.1+ε , which is well behaved for all
values of ε. The sensitivity of the computed satisfaction
probability has a maximum 1/(1− µ)2 dependence on the
accuracy of the estimate of ε. Thus, GLTL is considerably
more friendly to learning than is LTL.

Returning to the MDP example in Figure 1, we find that
GLTL is also more expressive than rewards. The GLTL
formula ¬q Uµp can be translated to a specification MDP.
Essentially, the idea is that encountering a bad state (q) even
once or running out of time results in specification failure.
Maximizing the satisfaction of this GLTL formula results
in taking action a1 regardless of the value of p. That is, it
is an environment-independent specification of the task.

The reason the GLTL formulation is able to succeed where
standard rewards fail is that the GLTL formula results in an
augmentation of the state space so that the reward function
can depend on whether a bad state has yet been encoun-
tered. On the first encounter, a penalty can be issued. Af-
ter the first encounter, no additional penalty is added. By
composing the environment MDP with this bit of internal
memory, the task can be expressed provably correctly and
in an environment-independent way.

3 Related Work

Discounting has been used in previous temporal models. In
quantitative temporal logic, it gives more weight to the sat-
isfaction of a logic property in the near future than the far
future. De Alfaro et al. (2003, 2004) augment computation
tree logic (CTL) with discounting and develop fixpoint-
based algorithms for checking such properties for proba-
bilistic systems and games. Almagor et al. (2014) explic-
itly refine the “eventually” operator of LTL to a discounting
operator such that the longer it takes to fulfill the task the
smaller the value of satisfaction. Further, they show that
discounted LTL is more expressive than discounted CTL.
They use both discounted until and undiscounted until for
expressing traditional eventually as well as its discounted
version. However, algorithms for model checking and syn-
thesis discounted LTL for probabilistic systems and games
are yet to be developed.

LTL has been used extensively in robotics domains. Work
on the trustworthiness of autonomous robots, automated
verification and synthesis with provable correctness with
respect to temporal logic-based specifications in motion,
task, and mission planning have attracted considerable at-

Table 1: Operator precedence in specification MDP con-
struction.

Precedence Operator # of Operands
1 not, ¬ 1

2
µ-always, �µ 1

µ-eventually, ♦µ 1
µ-until, Uµ 2

3 and, ∧ 2
4 or, ∨ 2

tention recently. The results include open-loop and reactive
control of deterministic, stochastic or non-deterministic
finite-state models as well as continuous state models
through appropriate finite-state abstractions (Wongpirom-
sarn et al., 2012; Kress-Gazit et al., 2009; Liu et al., 2013;
Wolff et al., 2012; Ding et al., 2011; Lahijanian et al., 2011;
Kress-Gazit et al., 2011). While temporal logic had initially
focused on reasoning about temporal and logical relations,
its dialects with probabilistic modalities have been used in-
creasingly for robotics applications (Baier & Katoen, 2008;
De Alfaro, 1998; Kwiatkowska et al., 2002).

4 Generating Specification MDPs

Similar to LTL, GLTL formulas are built from a set of
atomic propositions AP , Boolean operators ∧ (conjunc-
tion), ¬ (negation) and temporal operator Uµ (µ-until).
Useful operators such as∨ (disjunction),♦µ (µ-eventually)
and �µ (µ-always) can be derived from these basic opera-
tors.

GLTL formulas can be converted to the corresponding
specification MDPs recursively, with the operator prece-
dence listed in descending order in Table 1. Operators
of the same precedence are read from right to left. For
example, �µ1♦µ2ϕ = (�µ1(♦µ2ϕ)), ϕ1Uµ1ϕ2Uµ2ϕ3 =
(ϕ1Uµ1(ϕ2Uµ2ϕ3)).

Assume ϕ,ϕ1, ϕ2 are GLTL formulas in the following dis-
cussion.

• b, where b ∈ AP is an atomic proposition: A speci-
fication MDP Mb = ({sini, acc, rej}, {a}, T,R) for
b can be constructed such that, if p holds at sini,
the transition (sini, a, acc) is taken with probability
1; otherwise, the transition (sini, a, rej) is taken with
probability 1.

• ¬ϕ: A specification MDP M¬ϕ can be constructed
from a specification MDP Mϕ by swapping the termi-
nal states acc and rej.

• ϕ1 ∧ ϕ2: A specification MDP Mϕ1∧ϕ2 =
(S,A, T,R) can be constructed from spec-
ification MDPs Mϕ1

= (S1, A1, T1, R1)

Figure 3: First: The specification MDP representation of the LTL formula b. Second: The specification MDP representation
of the LTL formula �b. Third: The specification MDP representation of the GLTL formula �µb. Fourth: The composition
of the specification MDP representation of the GLTL formula �µb with the MDP from Figure 2.

and Mϕ2
= (S2, A2, T2, R2) such that (1)

S = (S1\{rej1}) × (S2\{rej2})
⋃
{rej}, and

the accepting state is acc = (acc1, acc2); (2)
A = A1 × A2; (3) for all transitions (s1, a1, s

′
1) of

Mϕ1 and (s2, a2, s
′
2) of Mϕ2 , if either s′1 = rej1

or s′2 = rej2, let T ((s1, s2), (a1, a2), rej) =
T1(s1, a1, s

′
1)T2(s2, a2, s

′
2); other-

wise, T ((s1, s2), (a1, a2), (s
′
1, s

′
2)) =

T1(s1, a1, s
′
1)T2(s2, a2, s

′
2).

• ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2).

• ϕ1Uµϕ2: The operator µ-until has two operands, ϕ1

and ϕ2, which generate specification MDPs Mϕ1
=

(S1, A1, T1, R1) and Mϕ2
= (S2, A2, T2, R2). The

new specification MDP Mϕ1Uµϕ2
= (S,A, T,R)

is constructed from Mϕ1 and Mϕ2 : S =
(S1\{acc1, rej1}) × (S2\{acc2, rej2})

⋃
{acc, rej},

where acc and rej are the accepting and rejecting state,
respectively, and sini = (sini1 , sini2) ∈ S is the ini-
tial state; A = A1 × A2; for all s = (s1, s2) ∈
S\{acc, rej}, a = (a1, a2) ∈ A, s′1 ∈ S1 and s′2 ∈ S2,
if T1(s1, a1, s

′
1) > 0 and T2(s2, a2, s

′
2) > 0, a tran-

sition (s, a, s′) is added to Mϕ1Uµϕ2 with probability
T (s, a, s′) as specified in Table 2.

Here are some intuitions behind the construction of
T . The formula ϕ1Uµϕ2 means that, within some
stochastically decided time period k, we would like
to successfully implement task ϕ2 in at most k steps
without ever failing in task ϕ1. If we observe a suc-
cess in Mϕ2 (that is, the specification reaches acc2)
before ϕ1 fails (that is the sepcification reaches rej1),
Mϕ1Uµϕ2

goes to state acc for sure; if we observe
a failure in Mϕ1

(that, the specifcation reaches rej1)
before succeeding in Mϕ2

(that is, the specification
reaches acc2), Mϕ1Uµϕ2 goes to state rej for sure. In
all other cases, Mϕ1Uµϕ2 primarily keeps track of the
transitions in Mϕ1

and Mϕ2
, with a tiny probability of

failing immediately, which corresponds to the opera-
tor expiring.

• ♦µϕ2: As in the semantics of LTL, µ-eventually
♦µϕ2 = True Uµϕ2. Hence, given a specification

Table 2: Transition (s, a, s′) in Mϕ1Uµϕ2 constructed from
a transition (s1, a1, s

′
1) in Mϕ1

and a transition (s2, a2, s
′
2)

in Mϕ2
. Here, p(s′|s′1, s′2) =

T (s,a,s′)
T1(s1,a1,s′1)T2(s2,a2,s′2)

. That
is, to get the transition probability, multiple the p column
by the corresponding T1 and T2 transition probabilities.

s′1 s′2 s′ p(s′|s′1, s′2)
acc1 acc2 acc 1

acc1 rej2
(s′1, s

′
2) 1− µ

rej µ

acc1 S2\{acc2, rej2}
(sini1 , s′2) 1− µ

rej µ
rej1 acc2 acc 1
rej1 S2\{acc2} rej 1

S1\{acc1, rej1} acc2 acc 1

S1\{acc1, rej1} rej2
(s′1, s

ini
2) 1− µ

rej µ

S1\{acc1, rej1} S2\{acc2, rej2}
(s′1, s

′
2) 1− µ

rej µ

MDP Mϕ2
= (S2, A2, T2, R2) for ϕ2, we can con-

struct a specification MDP M♦µϕ2
= (S,A, T,R) for

♦µϕ2: S = S2, sini = sini2 , acc = acc2, rej = rej2;
A = A2; transitions of M♦µϕ2 are modified from
those of Mϕ2 as in Table 3. Informally, ♦µϕ2 is sat-
isfied if we succeed in task ϕ2 within the stochastic
observation time period.

• �µϕ2: µ-always ϕ2 is equivalent to ¬♦µ¬ϕ2 =
¬(♦µ(¬ϕ2)). In other words, �µϕ2 is satisfied if we
did not witness a failure of ϕ2 within the stochastic
observation time period. The transitions of a specifi-
cation MDP M�µϕ2

can be constructed from Table 3,
or directly from Table 4.

Using the transitions as described, a given GLTL formula
can be converted into a specification MDP. To satisfy the
specification in a given environment, a joint MDP is created
as follows:

1. Take the cross product of the MDP representing the
environment and the specification MDP.

Table 3: Transition (s, a, s′) in M♦µϕ2
constructed from

a transition (s2, a2, s
′
2) in Mϕ2 . As above, p(s′|s′2) =

T (s,a,s′)
T2(s2,a2,s′2)

.

s′2 s′ p(s′|s′2)
acc2 acc2 1

rej2
sini2 1− µ
rej2 µ

S2\{acc2, rej2}
s′2 1− µ

rej2 µ

Table 4: Transition (s, a, s′) in M�µϕ2
constructed from

a transition (s2, a2, s
′
2) in Mϕ2

. As above, p(s′|s′2) =
T (s,a,s′)

T2(s2,a2,s′2)
.

s′2 s′ p(s′|s′2)

acc2
sini2 1− µ
acc2 µ

rej2 rej2 1

S2\{acc2, rej2}
s′2 1− µ

acc2 µ

2. Any state that corresponds to an accepting or rejecting
state of the specification MDP becomes a sink state.
However, the accepting states also include a reward of
+1.

3. The resulting MDP is solved to create a policy.

The resulting policy is one that maximizes the probability
of satisfying the given formula where the random events
are both the transitions in the environment and the stochas-
tic transitions in the specification MDP. Such policies tend
to prefer satisfying formulas quickly, as that increases the
chance of successful completion before operators expire.

5 Example Domain

Consider the following formula:

(¬blueUµred) ∧ (♦µ(red ∧ ♦µgreen)).

It specifies a task of reaching a red state without encounter-
ing a blue state and, once a red state is reached, going to a
green state.

Figure 5 illustrates a grid world environment in which this
task can be carried out. It consists of different colored grid
cells. The agent can move to one of the four adject cells to
its current position with a north, south, east, or west action.
However, selecting an action for one direction has a 0.02
probability of moving in the one of the three other direc-
tions. This stochastic movement causes the agent to keep

Figure 4: The optimal path in a grid world.

its distance from dangerous grid cells that could result in
task failure, whenever possible. The solid line in the figure
traces the path of the optimal policy of following this spec-
ification in the grid. As can be seen, the agent moves to red
and then green. Note that this behavior can be very difficult
to encode in a standard reward function as both green and
red need to be given positive reward and therefore either
would be a sensible place for the agent to stop.

Figure 5 illustrates a grid world environment in which the
blue cells create a partial barrier between the red and green
cells. As a result of the “until” in the specification, the
agent goes around the blue wall to get to the red cell. How-
ever, since the prohibition against blue cells is lifted once
the red cell is reached, it goes directly through the barrier
to reach green.

These 25-state environments become 98-state MDPs when
combined with the specification MDP.

6 Conclusion

In contrast to standard MDP reward functions, we have pro-
vided an environment-independent specification for tasks.
We have shown that this specification language can capture
standard tasks used in the MDP community and that it can
be automatically incorporated into an environment MDP to
create a fixed MDP to solve. Maximizing reward in this
resulting MDP maximizes the probability of satisfying the
task specification.

Future work includes inverse reinforcement learning of task
specifications and techniques for accelerating planning.

Figure 5: The optimal path in a slightly more complex grid
world.

References
Abbeel, Pieter and Ng, Andrew Y. Exploration and appren-

ticeship learning in reinforcement learning. In Proceed-
ings of the 22nd International Conference on Machine
Learning, pp. 1–8, 2005.

Almagor, Shaull, Boker, Udi, and Kupferman, Orna. Dis-
counting in ltl. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, pp. 424–439. Springer,
2014.

Atkeson, Christopher G. Using local trajectory optimiz-
ers to speed up global optimization in dynamic program-
ming. In Advances in Neural Information Processing
Systems, pp. 663–663, 1994.

Bacchus, Fahiem, Boutilier, Craig, and Grove, Adam. Re-
warding behaviors. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence, pp. 1160–
1167. AAAI Press/The MIT Press, 1996.

Baier, Christel and Katoen, Joost-Pieter. Principles of
Model Checking. MIT Press, 2008.

Barto, Andrew G., Sutton, Richard S., and Anderson,
Charles W. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions
on Systems, Man, and Cybernetics, SMC-13(5):834–
846, 1983.

Boutilier, Craig, Dean, Thomas, and Hanks, Steve.
Decision-theoretic planning: Structural assumptions and
computational leverage. Journal of Artificial Intelligence
Research, 11:1–94, 1999.

Brafman, Ronen I. and Tennenholtz, Moshe. R-MAX—a
general polynomial time algorithm for near-optimal re-

inforcement learning. Journal of Machine Learning Re-
search, 3:213–231, 2002.

De Alfaro, Luca. Formal verification of probabilistic sys-
tems. PhD thesis, Stanford University, Stanford, CA,
USA, 1998.

De Alfaro, Luca, Henzinger, Thomas A, and Majumdar,
Rupak. Discounting the future in systems theory. In Au-
tomata, Languages and Programming, pp. 1022–1037.
Springer, 2003.

De Alfaro, Luca, Faella, Marco, Henzinger, Thomas A,
Majumdar, Rupak, and Stoelinga, Mariëlle. Model
checking discounted temporal properties. Springer,
2004.

Dietterich, Thomas G. Hierarchical reinforcement learn-
ing with the MAXQ value function decomposition.
Journal of Artificial Intelligence Research, 13:227–303,
2000. URL citeseer.ist.psu.edu/article/
dietterich00hierarchical.html.

Ding, Xu Chu, Smith, Stephen L., Belta, Calin, and
Rus, Daniela. Ltl control in uncertain environ-
ments with probabilistic satisfaction guarantees. CoRR,
abs/1104.1159, 2011.

Fiechter, Claude-Nicolas. Efficient reinforcement learning.
In Proceedings of the Seventh Annual ACM Conference
on Computational Learning Theory, pp. 88–97. Associ-
ation of Computing Machinery, 1994.

Kearns, Michael and Singh, Satinder. Near-optimal rein-
forcement learning in polynomial time. In Proceedings
of the 15th International Conference on Machine Learn-
ing, pp. 260–268, 1998. URL citeseer.nj.nec.
com/kearns98nearoptimal.html.

Kearns, Michael J. and Singh, Satinder P. Near-optimal
reinforcement learning in polynomial time. Machine
Learning, 49(2–3):209–232, 2002.

Kress-Gazit, H., Fainekos, G.E., and Pappas, G.J.
Temporal-logic-based reactive mission and motion plan-
ning. IEEE Tans. on Robotics, 25:1370–1381, 2009.

Kress-Gazit, H., Wongpiromsarn, T., and Topcu, U. Cor-
rect, reactive robot control from abstraction and tempo-
ral logic specifications. IEEE RAM, 18:65–74, 2011.

Kwiatkowska, Marta, Norman, Gethin, and Parker, David.
Prism: Probabilistic symbolic model checker. In Com-
puter Performance Evaluation: Modelling Techniques
and Tools, volume 2324, pp. 113–140. Springer, 2002.

Lahijanian, M., Andersson, S. B., and Belta, C. Control of
Markov decision processes from PCTL specifications. In
Proc. of the American Control Conference, pp. 311–316,
2011.

Li, Lihong, Littman, Michael L., Walsh, Thomas J., and
Strehl, Alexander L. Knows what it knows: A frame-
work for self-aware learning. Machine Learning, 82(3):
399–443, 2011.

citeseer.ist.psu.edu/article/dietterich00hierarchical.html
citeseer.ist.psu.edu/article/dietterich00hierarchical.html
citeseer.nj.nec.com/kearns98nearoptimal.html
citeseer.nj.nec.com/kearns98nearoptimal.html

Liu, Jun, Ozay, Necmiye, Topcu, Ufuk, and Murray,
Richard M. Synthesis of reactive switching protocols
from temporal logic specifications. IEEE Transactions
on Automatic Control, 58(7):1771–1785, 2013.

Manna, Zohar and Pnueli, Amir. The Temporal Logic of
Reactive & Concurrent Sys. . Springer, 1992.

Moore, Andrew W. Variable resolution dynamic program-
ming: Efficiently learning action maps in multivariate
real-valued spaces. In Proc. Eighth International Ma-
chine Learning Workshop, 1991.

Puterman, Martin L. Markov Decision Processes—
Discrete Stochastic Dynamic Programming. John Wiley
& Sons, Inc., New York, NY, 1994.

Russell, Stuart J. and Norvig, Peter. Artificial Intelligence:
A Modern Approach. Prentice-Hall, Englewood Cliffs,
NJ, 1994. ISBN 0-13-103805-2.

Strehl, Alexander L., Li, Lihong, and Littman, Michael L.
Reinforcement learning in finite MDPs: PAC analysis.
Journal of Machine Learning Research, 10:2413–2444,
2009.

Watkins, Christopher J. C. H. Learning from Delayed Re-
wards. PhD thesis, King’s College, Cambridge, UK,
1989.

Wolff, Eric M., Topcu, Ufuk, and Murray, Richard M. Ro-
bust control of uncertain markov decision processes with
temporal logic specifications. In Proc. of the IEEE Con-
ference on Decision and Control, 2012.

Wongpiromsarn, T., Topcu, U., and Murray, R.M. Reced-
ing horizon temporal logic planning. IEEE T. on Auto-
matic Control, 57:2817–2830, 2012.

	1 Introduction
	1.1 Specifying behavior via reward functions
	1.2 Specifying behavior via LTL

	2 Learning To Satisfy LTL
	2.1 Geometric linear temporal logic

	3 Related Work
	4 Generating Specification MDPs
	5 Example Domain
	6 Conclusion

